Cargando…

Conventional Study on Novel Dicationic Ionic Liquid Inclusion with β-Cyclodextrin

This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3′-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conve...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamad, Sharifah, Surikumaran, Hemavathy, Raoov, Muggundha, Marimuthu, Tilagam, Chandrasekaram, Kumuthini, Subramaniam, Puvaneswary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189786/
https://www.ncbi.nlm.nih.gov/pubmed/22016662
http://dx.doi.org/10.3390/ijms12096329
Descripción
Sumario:This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3′-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton ((1)H) NMR and 2D ((1)H–(1)H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of β-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of β-CD. UV absorption indicated that β-CD reacts with PhenmimBr to form a 2:1 β-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 10(5) mol&(−2) L(2). Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the β-CD-PhenmimBr inclusion complex.