Cargando…

Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists

BACKGROUND: Unmethylated cytosine-guanine (CpG) motif-containing oligodeoxynucleotides (ODNs) have been well characterized as agonists of Toll-like receptor 9 (TLR9). ODNs with a phosphorothioate (PTO) backbone have been studied as TLR9 agonists since natural ODNs with a phosphodiester (PD) backbone...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Wenjun, Yamazaki, Tomohiko, Nishida, Yuuki, Hanagata, Nobutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189879/
https://www.ncbi.nlm.nih.gov/pubmed/21943407
http://dx.doi.org/10.1186/1472-6750-11-88
Descripción
Sumario:BACKGROUND: Unmethylated cytosine-guanine (CpG) motif-containing oligodeoxynucleotides (ODNs) have been well characterized as agonists of Toll-like receptor 9 (TLR9). ODNs with a phosphorothioate (PTO) backbone have been studied as TLR9 agonists since natural ODNs with a phosphodiester (PD) backbone are easily degraded by a serum nuclease, which makes them problematic for therapeutic applications. However, ODNs with a PTO backbone have been shown to have undesirable side effects. Thus, our goal was to develop nuclease-resistant, PD ODNs that are effective as human TLR9 (hTLR9) agonists. RESULTS: The sequence of ODN2006, a CpG ODN that acts as an hTLR9 agonist, was used as the basic CpG ODN material. The 3'-end modification of ODN2006 with a PD backbone (PD-ODN2006) improved its potential as an hTLR9 agonist because of increased resistance to nucleolytic degradation. Moreover, 3'-end modification with oligonucleotides showed higher induction than modification with biotin, FITC, and amino groups. Further, enhancement of hTLR9 activity was found to be dependent on the number of CpG core motifs (GTCGTT) in the PD ODN containing the 3'-end oligonucleotides. In particular, ODN sequences consisting of two to three linked ODN2006 sequences with a PD backbone (e.g., PD-ODN2006-2006 and PD-ODN2006-2006-2006) acted as effective agonists of hTLR9 even at lower concentrations. CONCLUSIONS: This study showed that PD-ODN2006-2006 and PD-ODN-2006-2006-2006 can be used as potentially safe agonists for hTLR9 activation instead of CpG ODNs with a PTO backbone. We propose these CpG ODNs consisting of only a PD backbone as a novel class of CpG ODN.