Cargando…
Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques
INTRODUCTION: Smoking-attributable risks for lung, esophageal, and head and neck (H/N) cancers range from 54% to 90%. Identifying areas with higher than average cancer risk and smoking rates, then targeting those areas for intervention, is one approach to more rapidly lower the overall tobacco disea...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190569/ https://www.ncbi.nlm.nih.gov/pubmed/22013392 http://dx.doi.org/10.4103/1477-3163.85184 |
_version_ | 1782213597932290048 |
---|---|
author | Dietz, Noella A. Sherman, Recinda MacKinnon, Jill Fleming, Lora Arheart, Kristopher L. Wohler, Brad Lee, David J. |
author_facet | Dietz, Noella A. Sherman, Recinda MacKinnon, Jill Fleming, Lora Arheart, Kristopher L. Wohler, Brad Lee, David J. |
author_sort | Dietz, Noella A. |
collection | PubMed |
description | INTRODUCTION: Smoking-attributable risks for lung, esophageal, and head and neck (H/N) cancers range from 54% to 90%. Identifying areas with higher than average cancer risk and smoking rates, then targeting those areas for intervention, is one approach to more rapidly lower the overall tobacco disease burden in a given state. Our research team used spatial modeling techniques to identify areas in Florida with higher than expected tobacco-associated cancer incidence clusters. MATERIALS AND METHODS: Geocoded tobacco-associated incident cancer data from 1998 to 2002 from the Florida Cancer Data System were used. Tobacco-associated cancers included lung, esophageal, and H/N cancers. SaTScan was used to identify geographic areas that had statistically significant (P<0.10) excess age-adjusted rates of tobacco-associated cancers. The Poisson-based spatial scan statistic was used. Phi correlation coefficients were computed to examine associations among block groups with/without overlapping cancer clusters. The logistic regression was used to assess associations between county-level smoking prevalence rates and being diagnosed within versus outside a cancer cluster. Community-level smoking rates were obtained from the 2002 Florida Behavioral Risk Factor Surveillance System (BRFSS). Analyses were repeated using 2007 BRFSS to examine the consistency of associations. RESULTS: Lung cancer clusters were geographically larger for both squamous cell and adenocarcinoma cases in Florida from 1998 to 2002, than esophageal or H/N clusters. There were very few squamous cell and adenocarcinoma esophageal cancer clusters. H/N cancer mapping showed some squamous cell and a very small amount of adenocarcinoma cancer clusters. Phi correlations were generally weak to moderate in strength. The odds of having an invasive lung cancer cluster increased by 12% per increase in the county-level smoking rate. Results were inconsistent for esophageal and H/N cancers, with some inverse associations. 2007 BRFSS data also showed a similar results pattern. CONCLUSIONS: Spatial analysis identified many nonoverlapping areas of high risk across both cancer and histological subtypes. Attempts to correlate county-level smoking rates with cancer cluster membership yielded consistent results only for lung cancer. However, spatial analyses may be most useful when examining incident clusters where several tobacco-associated cancer clusters overlap. Focusing on overlapping cancer clusters may help investigators identify priority areas for further screening, detailed assessments of tobacco use, and/or prevention and cessation interventions to decrease risk. |
format | Online Article Text |
id | pubmed-3190569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Medknow Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-31905692011-10-19 Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques Dietz, Noella A. Sherman, Recinda MacKinnon, Jill Fleming, Lora Arheart, Kristopher L. Wohler, Brad Lee, David J. J Carcinog Original Article INTRODUCTION: Smoking-attributable risks for lung, esophageal, and head and neck (H/N) cancers range from 54% to 90%. Identifying areas with higher than average cancer risk and smoking rates, then targeting those areas for intervention, is one approach to more rapidly lower the overall tobacco disease burden in a given state. Our research team used spatial modeling techniques to identify areas in Florida with higher than expected tobacco-associated cancer incidence clusters. MATERIALS AND METHODS: Geocoded tobacco-associated incident cancer data from 1998 to 2002 from the Florida Cancer Data System were used. Tobacco-associated cancers included lung, esophageal, and H/N cancers. SaTScan was used to identify geographic areas that had statistically significant (P<0.10) excess age-adjusted rates of tobacco-associated cancers. The Poisson-based spatial scan statistic was used. Phi correlation coefficients were computed to examine associations among block groups with/without overlapping cancer clusters. The logistic regression was used to assess associations between county-level smoking prevalence rates and being diagnosed within versus outside a cancer cluster. Community-level smoking rates were obtained from the 2002 Florida Behavioral Risk Factor Surveillance System (BRFSS). Analyses were repeated using 2007 BRFSS to examine the consistency of associations. RESULTS: Lung cancer clusters were geographically larger for both squamous cell and adenocarcinoma cases in Florida from 1998 to 2002, than esophageal or H/N clusters. There were very few squamous cell and adenocarcinoma esophageal cancer clusters. H/N cancer mapping showed some squamous cell and a very small amount of adenocarcinoma cancer clusters. Phi correlations were generally weak to moderate in strength. The odds of having an invasive lung cancer cluster increased by 12% per increase in the county-level smoking rate. Results were inconsistent for esophageal and H/N cancers, with some inverse associations. 2007 BRFSS data also showed a similar results pattern. CONCLUSIONS: Spatial analysis identified many nonoverlapping areas of high risk across both cancer and histological subtypes. Attempts to correlate county-level smoking rates with cancer cluster membership yielded consistent results only for lung cancer. However, spatial analyses may be most useful when examining incident clusters where several tobacco-associated cancer clusters overlap. Focusing on overlapping cancer clusters may help investigators identify priority areas for further screening, detailed assessments of tobacco use, and/or prevention and cessation interventions to decrease risk. Medknow Publications 2011-09-21 /pmc/articles/PMC3190569/ /pubmed/22013392 http://dx.doi.org/10.4103/1477-3163.85184 Text en © 2011 Dietz http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Dietz, Noella A. Sherman, Recinda MacKinnon, Jill Fleming, Lora Arheart, Kristopher L. Wohler, Brad Lee, David J. Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title | Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title_full | Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title_fullStr | Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title_full_unstemmed | Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title_short | Toward the identification of communities with increased tobacco-associated cancer burden: Application of spatial modeling techniques |
title_sort | toward the identification of communities with increased tobacco-associated cancer burden: application of spatial modeling techniques |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190569/ https://www.ncbi.nlm.nih.gov/pubmed/22013392 http://dx.doi.org/10.4103/1477-3163.85184 |
work_keys_str_mv | AT dietznoellaa towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT shermanrecinda towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT mackinnonjill towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT fleminglora towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT arheartkristopherl towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT wohlerbrad towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques AT leedavidj towardtheidentificationofcommunitieswithincreasedtobaccoassociatedcancerburdenapplicationofspatialmodelingtechniques |