Cargando…

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter) carrying negatively charged car...

Descripción completa

Detalles Bibliográficos
Autores principales: Maffre, Pauline, Nienhaus, Karin, Amin, Faheem, Parak, Wolfgang J, Nienhaus, G Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190609/
https://www.ncbi.nlm.nih.gov/pubmed/22003445
http://dx.doi.org/10.3762/bjnano.2.43
Descripción
Sumario:Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter) carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.