Cargando…
PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2
Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191149/ https://www.ncbi.nlm.nih.gov/pubmed/22022391 http://dx.doi.org/10.1371/journal.pone.0025419 |
_version_ | 1782213622346285056 |
---|---|
author | Xin, Zhongshuai Han, Wei Zhao, Zhiqiang Xia, Qing Yin, Bin Yuan, Jiangang Peng, Xiaozhong |
author_facet | Xin, Zhongshuai Han, Wei Zhao, Zhiqiang Xia, Qing Yin, Bin Yuan, Jiangang Peng, Xiaozhong |
author_sort | Xin, Zhongshuai |
collection | PubMed |
description | Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3′Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3′UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy. |
format | Online Article Text |
id | pubmed-3191149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31911492011-10-21 PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 Xin, Zhongshuai Han, Wei Zhao, Zhiqiang Xia, Qing Yin, Bin Yuan, Jiangang Peng, Xiaozhong PLoS One Research Article Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3′Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3′UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy. Public Library of Science 2011-10-11 /pmc/articles/PMC3191149/ /pubmed/22022391 http://dx.doi.org/10.1371/journal.pone.0025419 Text en Xin et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Xin, Zhongshuai Han, Wei Zhao, Zhiqiang Xia, Qing Yin, Bin Yuan, Jiangang Peng, Xiaozhong PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title | PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title_full | PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title_fullStr | PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title_full_unstemmed | PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title_short | PCBP2 Enhances the Antiviral Activity of IFN-α against HCV by Stabilizing the mRNA of STAT1 and STAT2 |
title_sort | pcbp2 enhances the antiviral activity of ifn-α against hcv by stabilizing the mrna of stat1 and stat2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191149/ https://www.ncbi.nlm.nih.gov/pubmed/22022391 http://dx.doi.org/10.1371/journal.pone.0025419 |
work_keys_str_mv | AT xinzhongshuai pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT hanwei pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT zhaozhiqiang pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT xiaqing pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT yinbin pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT yuanjiangang pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 AT pengxiaozhong pcbp2enhancestheantiviralactivityofifnaagainsthcvbystabilizingthemrnaofstat1andstat2 |