Cargando…
Toxicological Characterization of the Inorganic and Organic Arsenic Metabolite Thio-DMA(V) in Cultured Human Lung Cells
We synthesised and toxicologically characterised the arsenic metabolite thiodimethylarsinic acid (thio-DMA(V)). Successful synthesis of highly pure thio-DMA(V) was confirmed by state-of-the-art analytical techniques including (1)H-NMR, HPLC-FTMS, and HPLC-ICPMS. Toxicological characterization was ca...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191745/ https://www.ncbi.nlm.nih.gov/pubmed/22007210 http://dx.doi.org/10.1155/2011/373141 |
Sumario: | We synthesised and toxicologically characterised the arsenic metabolite thiodimethylarsinic acid (thio-DMA(V)). Successful synthesis of highly pure thio-DMA(V) was confirmed by state-of-the-art analytical techniques including (1)H-NMR, HPLC-FTMS, and HPLC-ICPMS. Toxicological characterization was carried out in comparison to arsenite and its well-known trivalent and pentavalent methylated metabolites. It comprised cellular bioavailability as well as different cytotoxicity and genotoxicity end points in cultured human A549 lung cells. Of all arsenicals investigated, thio-DMA(V) exerted the strongest cytotoxicity. Moreover, thio-DMA(V) did not induce DNA strand breaks and an increased induction of both micronuclei and multinucleated cells occurred only at beginning cytotoxic concentrations, indicating that thio-DMA(V) does not act via a genotoxic mode of action. Finally, to assess potential implications of thio-DMA(V) for human health, further mechanistic studies are urgently necessary to identify the toxic mode of action of this highly toxic, unusual pentavalent organic arsenical. |
---|