Cargando…
Inferring Network Dynamics and Neuron Properties from Population Recordings
Understanding the computational capabilities of the nervous system means to “identify” its emergent multiscale dynamics. For this purpose, we propose a novel model-driven identification procedure and apply it to sparsely connected populations of excitatory integrate-and-fire neurons with spike frequ...
Autores principales: | Linaro, Daniele, Storace, Marco, Mattia, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191764/ https://www.ncbi.nlm.nih.gov/pubmed/22016731 http://dx.doi.org/10.3389/fncom.2011.00043 |
Ejemplares similares
-
System identification of spiking neuron networks: a model-driven approach
por: Linaro, Daniele, et al.
Publicado: (2011) -
Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation
por: Linaro, Daniele, et al.
Publicado: (2011) -
Non-instantaneous synaptic transmission in spiking neuron networks and equivalence with delay distribution
por: Biggio, Matteo, et al.
Publicado: (2013) -
Compressive Sensing Inference of Neuronal Network Connectivity in Balanced Neuronal Dynamics
por: Barranca, Victor J., et al.
Publicado: (2019) -
Dimensional reduction in networks of non-Markovian spiking neurons: Equivalence of synaptic filtering and heterogeneous propagation delays
por: Mattia, Maurizio, et al.
Publicado: (2019)