Cargando…
Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching
Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191785/ https://www.ncbi.nlm.nih.gov/pubmed/22007332 http://dx.doi.org/10.1155/2011/413543 |
_version_ | 1782213692417376256 |
---|---|
author | Putrino, David F. Chen, Zhe Ghosh, Soumya Brown, Emery N. |
author_facet | Putrino, David F. Chen, Zhe Ghosh, Soumya Brown, Emery N. |
author_sort | Putrino, David F. |
collection | PubMed |
description | Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors. |
format | Online Article Text |
id | pubmed-3191785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31917852011-10-17 Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching Putrino, David F. Chen, Zhe Ghosh, Soumya Brown, Emery N. Neural Plast Research Article Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors. Hindawi Publishing Corporation 2011 2011-10-09 /pmc/articles/PMC3191785/ /pubmed/22007332 http://dx.doi.org/10.1155/2011/413543 Text en Copyright © 2011 David F. Putrino et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Putrino, David F. Chen, Zhe Ghosh, Soumya Brown, Emery N. Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching |
title | Motor Cortical Networks for Skilled Movements Have Dynamic
Properties That Are Related to Accurate Reaching |
title_full | Motor Cortical Networks for Skilled Movements Have Dynamic
Properties That Are Related to Accurate Reaching |
title_fullStr | Motor Cortical Networks for Skilled Movements Have Dynamic
Properties That Are Related to Accurate Reaching |
title_full_unstemmed | Motor Cortical Networks for Skilled Movements Have Dynamic
Properties That Are Related to Accurate Reaching |
title_short | Motor Cortical Networks for Skilled Movements Have Dynamic
Properties That Are Related to Accurate Reaching |
title_sort | motor cortical networks for skilled movements have dynamic
properties that are related to accurate reaching |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191785/ https://www.ncbi.nlm.nih.gov/pubmed/22007332 http://dx.doi.org/10.1155/2011/413543 |
work_keys_str_mv | AT putrinodavidf motorcorticalnetworksforskilledmovementshavedynamicpropertiesthatarerelatedtoaccuratereaching AT chenzhe motorcorticalnetworksforskilledmovementshavedynamicpropertiesthatarerelatedtoaccuratereaching AT ghoshsoumya motorcorticalnetworksforskilledmovementshavedynamicpropertiesthatarerelatedtoaccuratereaching AT brownemeryn motorcorticalnetworksforskilledmovementshavedynamicpropertiesthatarerelatedtoaccuratereaching |