Cargando…

Production of Toxic Volatile Trimethylbismuth by the Intestinal Microbiota of Mice

The biotransformation of metals and metalloids into their volatile methylated derivatives by microbes growing under anaerobic conditions (e.g., the mammalian intestinal microbiota) plays an important role in spreading these compounds in the environment. In this paper, we could show that the presence...

Descripción completa

Detalles Bibliográficos
Autores principales: Huber, Britta, Dammann, Philip, Krüger, Christine, Kirsch, Petra, Bialek, Beatrix, Diaz-Bone, Roland A., Hensel, Reinhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191823/
https://www.ncbi.nlm.nih.gov/pubmed/22007211
http://dx.doi.org/10.1155/2011/491039
Descripción
Sumario:The biotransformation of metals and metalloids into their volatile methylated derivatives by microbes growing under anaerobic conditions (e.g., the mammalian intestinal microbiota) plays an important role in spreading these compounds in the environment. In this paper, we could show that the presence of an intact intestinal microbiota of mice provides the conditio sine qua non for the production of these mostly toxic derivatives. To document the indispensible role of the intestinal microbiota in methylating metals and metalloids to volatile derivatives under in vivo conditions, we compared the methylation capability of conventionally raised (CONV) and germ-free (GF) B6-mice fed with chow containing colloidal bismuth subcitrate (CBS) as the starting material for the formation of volatile methylated metal(loid)s. Permethylated volatile trimethylbismuth ((CH(3))(3)Bi) was only detected in the blood of the conventionally raised mice. Concomitantly, a higher bismuth concentration was found in organs such as liver, lung, testicles, and brain of the CONV mice as compared to those of GF mice (P > 0.01), strongly suggesting a correlation between the intestinal biomethylation of bismuth and its accumulation in mammalian tissues.