Cargando…

Matrix-embedded cells control osteoclast formation

Osteoclasts resorb the mineralized matrices formed by chondrocytes or osteoblasts. The cytokine receptor activator of NFκB ligand (RANKL) is essential for osteoclast formation and thought to be supplied by osteoblasts or their precursors. However, RANKL is expressed by a variety of cell types and it...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Jinhu, Onal, Melda, Jilka, Robert L., Weinstein, Robert S., Manolagas, Stavros C., O’Brien, Charles A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192296/
https://www.ncbi.nlm.nih.gov/pubmed/21909103
http://dx.doi.org/10.1038/nm.2448
Descripción
Sumario:Osteoclasts resorb the mineralized matrices formed by chondrocytes or osteoblasts. The cytokine receptor activator of NFκB ligand (RANKL) is essential for osteoclast formation and thought to be supplied by osteoblasts or their precursors. However, RANKL is expressed by a variety of cell types and it is unclear which of them are essential sources for osteoclast formation. Here we have used a conditional mouse RANKL allele and a series of Cre-deleter strains to demonstrate that hypertrophic chondrocytes and osteocytes, both of which are embedded in matrix, are essential sources of the RANKL that controls mineralized cartilage resorption and bone remodeling, respectively. Moreover, osteocyte RANKL is responsible for the bone loss associated with unloading. Contrary to the current paradigm, RANKL produced by osteoblasts or their progenitors does not contribute to bone remodeling. These results suggest that the rate-limiting step of matrix resorption is controlled by cells embedded within the matrix itself.