Cargando…

Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

BACKGROUND: We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N...

Descripción completa

Detalles Bibliográficos
Autores principales: Imabuchi, Ryusei, Ohmiya, Yoshihiro, Joon Kwon, Hyuck, Onodera, Shin, Kitamura, Nobuto, Kurokawa, Takayuki, Ping Gong, Jian, Yasuda, Kazunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192715/
https://www.ncbi.nlm.nih.gov/pubmed/21955995
http://dx.doi.org/10.1186/1471-2474-12-213
Descripción
Sumario:BACKGROUND: We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. METHODS: We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. RESULTS: The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. CONCLUSIONS: The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration.