Cargando…
Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells
An unexpected side effect of some classes of anticoagulants has been osteoporosis which may be, at least in part, related to deranged mesenchymal stem cell (MSC) function. The aim of the present study was to compare the effect of fondaparinux (FDP), a novel antithrombotic with a traditional widely u...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193377/ https://www.ncbi.nlm.nih.gov/pubmed/21432897 http://dx.doi.org/10.1002/jor.21405 |
_version_ | 1782213837973356544 |
---|---|
author | Papathanasopoulos, Argiris Kouroupis, Dimitrios Henshaw, Karen McGonagle, Dennis Jones, Elena A Giannoudis, Peter V |
author_facet | Papathanasopoulos, Argiris Kouroupis, Dimitrios Henshaw, Karen McGonagle, Dennis Jones, Elena A Giannoudis, Peter V |
author_sort | Papathanasopoulos, Argiris |
collection | PubMed |
description | An unexpected side effect of some classes of anticoagulants has been osteoporosis which may be, at least in part, related to deranged mesenchymal stem cell (MSC) function. The aim of the present study was to compare the effect of fondaparinux (FDP), a novel antithrombotic with a traditional widely used low molecular weight heparin, tinzaparin (TZP) on MSC proliferation and differentiation. MSCs were isolated from trabecular bone of 14 trauma patients by a collagenase-based digestion procedure and expanded in standard conditions until passage 3. Proliferation and differentiation of MSCs to chondrocytes and osteoblasts was assessed with or without the addition of FDP and TZP using standard in vitro assays and a broad range of drug concentrations. Flow cytometry was used for MSC phenotyping. In the age studied group (17–74 years old) the MSC frequency in collagenase-released fractions was 641/10(6) cells (range 110–2,158) and their growth characteristics were ∼4 days/population doubling. Cultures had a standard MSC phenotype (CD73+, CD105+, CD146+, CD106+, and CD166+). Cell proliferation was assessed by both colony-forming unit-fibroblast (CFU-F) and colorimetric tetrazolium salt XTT assays. In both assays, MSC proliferation was inhibited by the addition of TZP, particularly at high concentrations. In contrast, FDP had no effect on MSC proliferation. Osteogenic differentiation and chondrogenic differentiation were not affected by the addition of either TZP or FDP. Whilst MSC proliferation, but not differentiation, is negatively affected by TZP, there was no evidence for adverse effects of FDP in this in vitro model system which argues well for its use in the orthopedic setting. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1327–1335, 2011 |
format | Online Article Text |
id | pubmed-3193377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Wiley Subscription Services, Inc., A Wiley Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-31933772011-10-19 Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells Papathanasopoulos, Argiris Kouroupis, Dimitrios Henshaw, Karen McGonagle, Dennis Jones, Elena A Giannoudis, Peter V J Orthop Res Research Article An unexpected side effect of some classes of anticoagulants has been osteoporosis which may be, at least in part, related to deranged mesenchymal stem cell (MSC) function. The aim of the present study was to compare the effect of fondaparinux (FDP), a novel antithrombotic with a traditional widely used low molecular weight heparin, tinzaparin (TZP) on MSC proliferation and differentiation. MSCs were isolated from trabecular bone of 14 trauma patients by a collagenase-based digestion procedure and expanded in standard conditions until passage 3. Proliferation and differentiation of MSCs to chondrocytes and osteoblasts was assessed with or without the addition of FDP and TZP using standard in vitro assays and a broad range of drug concentrations. Flow cytometry was used for MSC phenotyping. In the age studied group (17–74 years old) the MSC frequency in collagenase-released fractions was 641/10(6) cells (range 110–2,158) and their growth characteristics were ∼4 days/population doubling. Cultures had a standard MSC phenotype (CD73+, CD105+, CD146+, CD106+, and CD166+). Cell proliferation was assessed by both colony-forming unit-fibroblast (CFU-F) and colorimetric tetrazolium salt XTT assays. In both assays, MSC proliferation was inhibited by the addition of TZP, particularly at high concentrations. In contrast, FDP had no effect on MSC proliferation. Osteogenic differentiation and chondrogenic differentiation were not affected by the addition of either TZP or FDP. Whilst MSC proliferation, but not differentiation, is negatively affected by TZP, there was no evidence for adverse effects of FDP in this in vitro model system which argues well for its use in the orthopedic setting. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1327–1335, 2011 Wiley Subscription Services, Inc., A Wiley Company 2011-09 2011-03-22 /pmc/articles/PMC3193377/ /pubmed/21432897 http://dx.doi.org/10.1002/jor.21405 Text en Copyright © 2011 Orthopaedic Research Society http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Research Article Papathanasopoulos, Argiris Kouroupis, Dimitrios Henshaw, Karen McGonagle, Dennis Jones, Elena A Giannoudis, Peter V Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title | Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title_full | Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title_fullStr | Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title_full_unstemmed | Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title_short | Effects of Antithrombotic Drugs Fondaparinux and Tinzaparin on In Vitro Proliferation and Osteogenic and Chondrogenic Differentiation of Bone-Derived Mesenchymal Stem Cells |
title_sort | effects of antithrombotic drugs fondaparinux and tinzaparin on in vitro proliferation and osteogenic and chondrogenic differentiation of bone-derived mesenchymal stem cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193377/ https://www.ncbi.nlm.nih.gov/pubmed/21432897 http://dx.doi.org/10.1002/jor.21405 |
work_keys_str_mv | AT papathanasopoulosargiris effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells AT kouroupisdimitrios effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells AT henshawkaren effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells AT mcgonagledennis effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells AT joneselenaa effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells AT giannoudispeterv effectsofantithromboticdrugsfondaparinuxandtinzaparinoninvitroproliferationandosteogenicandchondrogenicdifferentiationofbonederivedmesenchymalstemcells |