Cargando…

Aging and Functional Brain Networks

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the “default-mode” network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomasi, Dardo, Volkow, Nora D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193908/
https://www.ncbi.nlm.nih.gov/pubmed/21727896
http://dx.doi.org/10.1038/mp.2011.81
Descripción
Sumario:Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the “default-mode” network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis we evaluated resting-state datasets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping, a voxelwise and data-driven approach together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that in addition to the DMN the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.