Cargando…
Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis
BACKGROUND: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics ma...
Autores principales: | Wang, Zhenyu, Palade, Vasile |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194236/ https://www.ncbi.nlm.nih.gov/pubmed/21989191 http://dx.doi.org/10.1186/1471-2164-12-S2-S5 |
Ejemplares similares
-
THINK Back: KNowledge-based Interpretation of High Throughput data
por: Farfán, Fernando, et al.
Publicado: (2012) -
Unsupervised fuzzy pattern discovery in gene expression data
por: Wu, Gene PK, et al.
Publicado: (2011) -
Robust clustering in high dimensional data using statistical depths
por: Ding, Yuanyuan, et al.
Publicado: (2007) -
High dimensional biological data retrieval optimization with NoSQL technology
por: Wang, Shicai, et al.
Publicado: (2014) -
A kernel-based approach for detecting outliers of high-dimensional biological data
por: Oh, Jung Hun, et al.
Publicado: (2009)