Cargando…
Ψ-RA: a parallel sparse index for genomic read alignment
BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an altern...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194238/ https://www.ncbi.nlm.nih.gov/pubmed/21989248 http://dx.doi.org/10.1186/1471-2164-12-S2-S7 |
_version_ | 1782213935337832448 |
---|---|
author | Oğuzhan Külekci, M Hon, Wing-Kai Shah, Rahul Scott Vitter, Jeffrey Xu, Bojian |
author_facet | Oğuzhan Külekci, M Hon, Wing-Kai Shah, Rahul Scott Vitter, Jeffrey Xu, Bojian |
author_sort | Oğuzhan Külekci, M |
collection | PubMed |
description | BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this alignment process, indexing the reference genome and short read searching over the index is a dominant technique. Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads produced by the next generation high-throughput DNA sequencing technology. RESULTS: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read aligner named Ψ-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade memory against time. It is possible to fine tune the space consumption of the index based on the available memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been studied before for exact matching of short reads, an elegant way of approximate matching capability was missing. We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads, where errors are more probable. Ψ-RA supports any number of mismatches in aligning reads. We give comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a good alternative to the Burrows-Wheeler transform or seed-based solutions. CONCLUSIONS: Ψ-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next generation high-throughput sequencing technology. Ψ-RA is very fast in exact matching and also supports rightmost approximate matching. The SSA structure that Ψ-RA is built on naturally incorporates the modern multicore architecture and thus further speed-up can be gained. All the information, including the source code of Ψ-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip. |
format | Online Article Text |
id | pubmed-3194238 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31942382011-10-17 Ψ-RA: a parallel sparse index for genomic read alignment Oğuzhan Külekci, M Hon, Wing-Kai Shah, Rahul Scott Vitter, Jeffrey Xu, Bojian BMC Genomics Proceedings BACKGROUND: Genomic read alignment involves mapping (exactly or approximately) short reads from a particular individual onto a pre-sequenced reference genome of the same species. Because all individuals of the same species share the majority of their genomes, short reads alignment provides an alternative and much more efficient way to sequence the genome of a particular individual than does direct sequencing. Among many strategies proposed for this alignment process, indexing the reference genome and short read searching over the index is a dominant technique. Our goal is to design a space-efficient indexing structure with fast searching capability to catch the massive short reads produced by the next generation high-throughput DNA sequencing technology. RESULTS: We concentrate on indexing DNA sequences via sparse suffix arrays (SSAs) and propose a new short read aligner named Ψ-RA (PSI-RA: parallel sparse index read aligner). The motivation in using SSAs is the ability to trade memory against time. It is possible to fine tune the space consumption of the index based on the available memory of the machine and the minimum length of the arriving pattern queries. Although SSAs have been studied before for exact matching of short reads, an elegant way of approximate matching capability was missing. We provide this by defining the rightmost mismatch criteria that prioritize the errors towards the end of the reads, where errors are more probable. Ψ-RA supports any number of mismatches in aligning reads. We give comparisons with some of the well-known short read aligners, and show that indexing a genome with SSA is a good alternative to the Burrows-Wheeler transform or seed-based solutions. CONCLUSIONS: Ψ-RA is expected to serve as a valuable tool in the alignment of short reads generated by the next generation high-throughput sequencing technology. Ψ-RA is very fast in exact matching and also supports rightmost approximate matching. The SSA structure that Ψ-RA is built on naturally incorporates the modern multicore architecture and thus further speed-up can be gained. All the information, including the source code of Ψ-RA, can be downloaded at: http://www.busillis.com/o_kulekci/PSIRA.zip. BioMed Central 2011-07-27 /pmc/articles/PMC3194238/ /pubmed/21989248 http://dx.doi.org/10.1186/1471-2164-12-S2-S7 Text en Copyright ©2011 Oğuzhan Külekci et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Proceedings Oğuzhan Külekci, M Hon, Wing-Kai Shah, Rahul Scott Vitter, Jeffrey Xu, Bojian Ψ-RA: a parallel sparse index for genomic read alignment |
title | Ψ-RA: a parallel sparse index for genomic read alignment |
title_full | Ψ-RA: a parallel sparse index for genomic read alignment |
title_fullStr | Ψ-RA: a parallel sparse index for genomic read alignment |
title_full_unstemmed | Ψ-RA: a parallel sparse index for genomic read alignment |
title_short | Ψ-RA: a parallel sparse index for genomic read alignment |
title_sort | ψ-ra: a parallel sparse index for genomic read alignment |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194238/ https://www.ncbi.nlm.nih.gov/pubmed/21989248 http://dx.doi.org/10.1186/1471-2164-12-S2-S7 |
work_keys_str_mv | AT oguzhankulekcim psraaparallelsparseindexforgenomicreadalignment AT honwingkai psraaparallelsparseindexforgenomicreadalignment AT shahrahul psraaparallelsparseindexforgenomicreadalignment AT scottvitterjeffrey psraaparallelsparseindexforgenomicreadalignment AT xubojian psraaparallelsparseindexforgenomicreadalignment |