Cargando…
bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies
BACKGROUND: Detecting epistatic interactions plays a significant role in improving pathogenesis, prevention, diagnosis and treatment of complex human diseases. A recent study in automatic detection of epistatic interactions shows that Markov Blanket-based methods are capable of finding genetic varia...
Autores principales: | Han, Bing, Chen, Xue-wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194240/ https://www.ncbi.nlm.nih.gov/pubmed/21989368 http://dx.doi.org/10.1186/1471-2164-12-S2-S9 |
Ejemplares similares
-
Detecting epistatic interactions contributing to human gene expression using the CEPH family data
por: Li, Hua, et al.
Publicado: (2007) -
Searching for epistatic interactions in nuclear families using conditional linkage analysis
por: Shah, Svati H, et al.
Publicado: (2005) -
Evaluating epistatic interaction signals in complex traits using quantitative traits
por: Mukherjee, Odity, et al.
Publicado: (2009) -
Application of Bayesian classification with singular value decomposition method in genome-wide association studies
por: Kwon, Soonil, et al.
Publicado: (2009) -
Application of an iterative Bayesian variable selection method in a genome-wide association study of rheumatoid arthritis
por: Kwon, Soonil, et al.
Publicado: (2007)