Cargando…

Intrusion Experiments to Measure Territory Size: Development of the Method, Tests through Simulations, and Application in the Frog Allobates femoralis

Territoriality is a widespread behaviour in animals and its analysis is crucial in several areas of behavioural, ecological and evolutionary research. Commonly, territory size is assessed through territory mapping and the application of simple area estimators such as minimum convex polygons. In the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ringler, Max, Ringler, Eva, Magaña Mendoza, Daniela, Hödl, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194823/
https://www.ncbi.nlm.nih.gov/pubmed/22022456
http://dx.doi.org/10.1371/journal.pone.0025844
Descripción
Sumario:Territoriality is a widespread behaviour in animals and its analysis is crucial in several areas of behavioural, ecological and evolutionary research. Commonly, territory size is assessed through territory mapping and the application of simple area estimators such as minimum convex polygons. In the present study we demonstrate that territory size can be determined adequately with an active approach through intrusion experiments, a technique that is commonly used in behavioural research in other contexts. Tests with simulated data indicate that a minimum of twelve trials needs to be performed to establish reliable orders of relative territory size. To estimate absolute territory size, detailed hull techniques are most appropriate when analyzing point patterns of intrusion experiments, while the local convex hull estimator enables the construction of internal utilization distributions based on such point patterns. Additionally we suggest a ‘stretch the centre’ approach to emphasize the actual process of intrusion experiments in the construction of internal utilization distributions. To demonstrate the utility of the method, we apply all findings from the simulations to data from fieldwork with the model species Allobates femoralis, a territorial aromobatid frog from the lowland rainforest of French Guiana.