Cargando…
Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration
BACKGROUND: Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195092/ https://www.ncbi.nlm.nih.gov/pubmed/21961562 http://dx.doi.org/10.1186/1477-3155-9-45 |
_version_ | 1782214065150492672 |
---|---|
author | Yaron, Peter N Holt, Brian D Short, Philip A Lösche, Mathias Islam, Mohammad F Dahl, Kris Noel |
author_facet | Yaron, Peter N Holt, Brian D Short, Philip A Lösche, Mathias Islam, Mohammad F Dahl, Kris Noel |
author_sort | Yaron, Peter N |
collection | PubMed |
description | BACKGROUND: Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs) through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments. RESULTS: SWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles. CONCLUSIONS: These measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake. |
format | Online Article Text |
id | pubmed-3195092 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31950922011-10-19 Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration Yaron, Peter N Holt, Brian D Short, Philip A Lösche, Mathias Islam, Mohammad F Dahl, Kris Noel J Nanobiotechnology Research BACKGROUND: Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs) through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments. RESULTS: SWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles. CONCLUSIONS: These measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake. BioMed Central 2011-09-30 /pmc/articles/PMC3195092/ /pubmed/21961562 http://dx.doi.org/10.1186/1477-3155-9-45 Text en Copyright ©2011 Yaron et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Yaron, Peter N Holt, Brian D Short, Philip A Lösche, Mathias Islam, Mohammad F Dahl, Kris Noel Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title | Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title_full | Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title_fullStr | Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title_full_unstemmed | Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title_short | Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
title_sort | single wall carbon nanotubes enter cells by endocytosis and not membrane penetration |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195092/ https://www.ncbi.nlm.nih.gov/pubmed/21961562 http://dx.doi.org/10.1186/1477-3155-9-45 |
work_keys_str_mv | AT yaronpetern singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration AT holtbriand singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration AT shortphilipa singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration AT loschemathias singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration AT islammohammadf singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration AT dahlkrisnoel singlewallcarbonnanotubesentercellsbyendocytosisandnotmembranepenetration |