Cargando…

Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD(+) Concentration in Human Primary Astrocytes

Efficient synthesis of NAD(+) is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD(+). The aim of this study was to investigate the relationship, between tryptophan degradation via the...

Descripción completa

Detalles Bibliográficos
Autores principales: Grant, Ross, Nguyen, Susan, Guillemin, Gilles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Libertas Academica 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195244/
https://www.ncbi.nlm.nih.gov/pubmed/22084595
Descripción
Sumario:Efficient synthesis of NAD(+) is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD(+). The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD(+) synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD(+) levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD(+) levels after 24 hrs. This decrease in NAD(+) was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide.