Cargando…

Identification of Microbial and Proteomic Biomarkers in Early Childhood Caries

The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate classification analysis was empl...

Descripción completa

Detalles Bibliográficos
Autores principales: Hart, Thomas C., Corby, Patricia M., Hauskrecht, Milos, Hee Ryu, Ok, Pelikan, Richard, Valko, Michal, Oliveira, Maria B., Hoehn, Gerald T., Bretz, Walter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195543/
https://www.ncbi.nlm.nih.gov/pubmed/22013442
http://dx.doi.org/10.1155/2011/196721
Descripción
Sumario:The purpose of this study was to provide a univariate and multivariate analysis of genomic microbial data and salivary mass-spectrometry proteomic profiles for dental caries outcomes. In order to determine potential useful biomarkers for dental caries, a multivariate classification analysis was employed to build predictive models capable of classifying microbial and salivary sample profiles with generalization performance. We used high-throughput methodologies including multiplexed microbial arrays and SELDI-TOF-MS profiling to characterize the oral flora and salivary proteome in 204 children aged 1–8 years (n = 118 caries-free, n = 86 caries-active). The population received little dental care and was deemed at high risk for childhood caries. Findings of the study indicate that models incorporating both microbial and proteomic data are superior to models of only microbial or salivary data alone. Comparison of results for the combined and independent data suggests that the combination of proteomic and microbial sources is beneficial for the classification accuracy and that combined data lead to improved predictive models for caries-active and caries-free patients. The best predictive model had a 6% test error, >92% sensitivity, and >95% specificity. These findings suggest that further characterization of the oral microflora and the salivary proteome associated with health and caries may provide clinically useful biomarkers to better predict future caries experience.