Cargando…
A Helix Heterodimer in a Lipid Bilayer: Prediction of the Structure of an Integrin Transmembrane Domain via Multiscale Simulations
Dimerization of transmembrane (TM) α helices of membrane receptors plays a key role in signaling. We show that molecular dynamics simulations yield models of integrin TM helix heterodimers, which agree well with available NMR structures. We use a multiscale simulation approach, combining coarse-grai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195670/ https://www.ncbi.nlm.nih.gov/pubmed/22000516 http://dx.doi.org/10.1016/j.str.2011.07.014 |
Sumario: | Dimerization of transmembrane (TM) α helices of membrane receptors plays a key role in signaling. We show that molecular dynamics simulations yield models of integrin TM helix heterodimers, which agree well with available NMR structures. We use a multiscale simulation approach, combining coarse-grained and subsequent atomistic simulation, to model the dimerization of wild-type (WT) and mutated sequences of the αIIb and β3 integrin TM helices. The WT helices formed a stable, right-handed dimer with the same helix-helix interface as in the published NMR structure (PDB: 2K9J). In contrast, the presence of disruptive mutations perturbed the interface between the helices, altering the conformational stability of the dimer. The αIIb/β3 interface was more flexible than that of, e.g., glycophorin A. This is suggestive of a role for alternative packing modes of the TM helices in transbilayer signaling. |
---|