Cargando…
Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells
Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airw...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195692/ https://www.ncbi.nlm.nih.gov/pubmed/22022610 http://dx.doi.org/10.1371/journal.pone.0026384 |
_version_ | 1782214145909719040 |
---|---|
author | Morioka, Masataka Parameswaran, Harikrishnan Naruse, Keiji Kondo, Masashi Sokabe, Masahiro Hasegawa, Yoshinori Suki, Béla Ito, Satoru |
author_facet | Morioka, Masataka Parameswaran, Harikrishnan Naruse, Keiji Kondo, Masashi Sokabe, Masahiro Hasegawa, Yoshinori Suki, Béla Ito, Satoru |
author_sort | Morioka, Masataka |
collection | PubMed |
description | Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma. |
format | Online Article Text |
id | pubmed-3195692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-31956922011-10-21 Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells Morioka, Masataka Parameswaran, Harikrishnan Naruse, Keiji Kondo, Masashi Sokabe, Masahiro Hasegawa, Yoshinori Suki, Béla Ito, Satoru PLoS One Research Article Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma. Public Library of Science 2011-10-17 /pmc/articles/PMC3195692/ /pubmed/22022610 http://dx.doi.org/10.1371/journal.pone.0026384 Text en Morioka et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Morioka, Masataka Parameswaran, Harikrishnan Naruse, Keiji Kondo, Masashi Sokabe, Masahiro Hasegawa, Yoshinori Suki, Béla Ito, Satoru Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title | Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title_full | Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title_fullStr | Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title_full_unstemmed | Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title_short | Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells |
title_sort | microtubule dynamics regulate cyclic stretch-induced cell alignment in human airway smooth muscle cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195692/ https://www.ncbi.nlm.nih.gov/pubmed/22022610 http://dx.doi.org/10.1371/journal.pone.0026384 |
work_keys_str_mv | AT moriokamasataka microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT parameswaranharikrishnan microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT narusekeiji microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT kondomasashi microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT sokabemasahiro microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT hasegawayoshinori microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT sukibela microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells AT itosatoru microtubuledynamicsregulatecyclicstretchinducedcellalignmentinhumanairwaysmoothmusclecells |