Cargando…

A biocompatible condensation reaction for controlled assembly of nanostructures in live cells

Through controlled synthesis and molecular assembly, biological systems are able to organize molecules into supramolecular structures that carry out sophisticated processes. Although chemists have reported a few examples of supramolecular assembly in water, the controlled covalent synthesis of large...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Gaolin, Ren, Hongjun, Rao, Jianghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196337/
https://www.ncbi.nlm.nih.gov/pubmed/21124381
Descripción
Sumario:Through controlled synthesis and molecular assembly, biological systems are able to organize molecules into supramolecular structures that carry out sophisticated processes. Although chemists have reported a few examples of supramolecular assembly in water, the controlled covalent synthesis of large molecules and structures in vivo has remained challenging. Here we report a condensation reaction between 1,2-aminothiol and 2-cyanobenzothiazole that occurs in vitro and in living cells under the control of pH, disulfide reduction and enzymatic cleavage. In vitro, the size and shape of the condensation products, and nanostructures subsequently assembled, were different in each case and could thus be controlled by tuning the structure of the monomers. Direct imaging of the products obtained in the cells revealed their locations – near the Golgi bodies under enzymatic cleavage control – demonstrating the feasibility of a controlled and localized reaction in living cells. This intracellular condensation process enabled the imaging of the proteolytic activity of furin.