Cargando…
Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with SPADE
Multiparametric single-cell analysis is critical for understanding cellular heterogeneity. Despite recent technological advances in single-cell measurements, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological sy...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196363/ https://www.ncbi.nlm.nih.gov/pubmed/21964415 http://dx.doi.org/10.1038/nbt.1991 |
Sumario: | Multiparametric single-cell analysis is critical for understanding cellular heterogeneity. Despite recent technological advances in single-cell measurements, methods for analyzing high-dimensional single-cell data are often subjective, labor intensive and require prior knowledge of the biological system under investigation. To objectively uncover cellular heterogeneity from single-cell measurements, we present a novel computational approach, Spanning-tree Progression Analysis of Density-normalized Events (SPADE). We applied SPADE to cytometry data of mouse and human bone marrow. In both cases, SPADE organized cells in a hierarchy of related phenotypes that partially recapitulated well-described patterns of hematopoiesis. In addition, SPADE produced a map of intracellular signal activation across the landscape of human hematopoietic development. SPADE revealed a functionally distinct cell population, natural killer (NK) cells, without using any NK-specific parameters. SPADE is a versatile method that facilitates the analysis of cellular heterogeneity, the identification of cell types, and comparison of functional markers in response to perturbations. |
---|