Cargando…

Proteases Inhibition Assessment on PC12 and NGF Treated Cells after Oxygen and Glucose Deprivation Reveals a Distinct Role for Aspartyl Proteases

Hypoxia is a severe stressful condition and induces cell death leading to neuronal loss both to the developing and adult nervous system. Central theme to cellular death is the activation of different classes of proteases such as caspases calpains and cathepsins. In the present study we investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: Kritis, Aristidis, Pourzitaki, Chryssa, Klagas, Ioannis, Chourdakis, Michael, Albani, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196512/
https://www.ncbi.nlm.nih.gov/pubmed/22028798
http://dx.doi.org/10.1371/journal.pone.0025950
Descripción
Sumario:Hypoxia is a severe stressful condition and induces cell death leading to neuronal loss both to the developing and adult nervous system. Central theme to cellular death is the activation of different classes of proteases such as caspases calpains and cathepsins. In the present study we investigated the involvement of these proteases, in the hypoxia-induced PC12 cell death. Rat PC12 is a model cell line for experimentation relevant to the nervous system and several protocols have been developed for either lethal hypoxia (oxygen and glucose deprivation OGD) or ischemic preconditioning (IPS). Nerve Growth Factor (NGF) treated PC12 differentiate to a sympathetic phenotype, expressing neurites and excitability. Lethal hypoxia was established by exposing undifferentiated and NGF-treated PC12 cells to a mixture of N(2)/CO(2) (93:5%) in DMEM depleted of glucose and sodium pyruvate for 16 h. The involvement of caspases, calpains and lysosomal cathepsins D and E to the cell death induced by lethal OGD was investigated employing protease specific inhibitors such as z-VAD-fmk for the caspases, MDL28170 for the calpains and pepstatin A for the cathepsins D and E. Our findings show that pepstatin A provides statistically significant protection from cell death of both naive and NGF treated PC12 cells exposed to lethal OGD. We propose that apart from the established processes of apoptosis and necrosis that are integral components of lethal OGD, the activation of cathepsins D and E launches additional cell death pathways in which these proteases are key partners.