Cargando…

HLA-DRB1 May Be Antagonistically Regulated by the Coordinately Evolved Promoter and 3′-UTR under Stabilizing Selection

HLA-DRB1 is the most polymorphic MHC (major histocompatibility complex) class II gene in human, and plays a crucial role in the development and function of the immune system. Extensive polymorphisms exist in the promoter and 3′-UTR of HLA-DRB1, especially a LTR (Long terminal repeat) element in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Benrong, Fu, Yonggui, Wang, Zhifen, Zhou, Sisi, Sun, Yu, Wu, Yuping, Xu, Anlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196528/
https://www.ncbi.nlm.nih.gov/pubmed/22028790
http://dx.doi.org/10.1371/journal.pone.0025794
Descripción
Sumario:HLA-DRB1 is the most polymorphic MHC (major histocompatibility complex) class II gene in human, and plays a crucial role in the development and function of the immune system. Extensive polymorphisms exist in the promoter and 3′-UTR of HLA-DRB1, especially a LTR (Long terminal repeat) element in the promoter, which may be involved in the expression regulation. However, it remains unknown how the polymorphisms in the whole promoter region and 3′-UTR to regulate the gene expression. In this study, we investigated the extensive polymorphisms in the HLA-DRB1 promoter and 3′-UTR, and how these polymorphisms affect the gene expression in both independent and jointly manners. It was observed that most of the haplotypes in the DRB1 promoter and 3′-UTR were clustered into 4 conserved lineages (H1, H2, H3 and H4), and showed high linkage disequilibrium. Compared with H1 and H2 lineage, a LTR element in the promoter of H3 and H4 lineage significantly suppressed the promoter activity, whereas the activity of the linked 3′-UTR increased, leading to no apparent difference in the final expression product between H1/H2 and H3/H4 lineage. Nevertheless, compared with the plasmid with a promoter and 3′-UTR from the same lineage, the recombinant plasmid with a promoter from H2 and a 3′-UTR from H3 showed about double fold increased luciferase activity, Conversely, the recombinant plasmid with a promoter from H3 and a 3′-UTR from H2 resulted in about 2-fold decreased luciferase activity. These results indicate that the promoter and 3′-UTR of HLA-DRB1 may antagonistically regulate the gene expression, which may be subjected to stabilizing selection. These findings may provide a novel insight into the mechanisms of the diseases associated with HLA-DRB1 genes.