Cargando…

Retinal origin of orientation maps in visual cortex

The orientation map is a hallmark of primary visual cortex in higher mammals. It is not yet known how orientation maps develop, what function they play in visual processing and why some species lack them. Here we advance the notion that quasi-periodic orientation maps are established by moiré interf...

Descripción completa

Detalles Bibliográficos
Autores principales: Paik, Se-Bum, Ringach, Dario L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196663/
https://www.ncbi.nlm.nih.gov/pubmed/21623365
http://dx.doi.org/10.1038/nn.2824
Descripción
Sumario:The orientation map is a hallmark of primary visual cortex in higher mammals. It is not yet known how orientation maps develop, what function they play in visual processing and why some species lack them. Here we advance the notion that quasi-periodic orientation maps are established by moiré interference of regularly spaced ON and OFF-center retinal ganglion cell mosaics. A key prediction of the theory is that the centers of iso-orientation domains must be arranged in a hexagonal lattice on the cortical surface. Here we show that such pattern is observed in individuals of four different species: monkey, cat, tree shrew and ferret. The proposed mechanism explains how orientation maps can develop without requiring precise patterns of spontaneous activity or molecular guidance. Further, it offers a possible account for the emergence of orientation tuning in single neurons despite the absence of orderly orientation maps in rodents species.