Cargando…

Validation of a Biofeedback System for Wheelchair Propulsion Training

This paper describes the design and validation of the OptiPush Biofeedback System, a commercially available, instrumented wheel system that records handrim biomechanics and provides stroke-by-stroke biofeedback and targeting for 11 propulsion variables. Testing of the system revealed accurate measur...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Liyun, Kwarciak, Andrew M., Rodriguez, Russell, Sarkar, Nilanjan, Richter, W. Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196933/
https://www.ncbi.nlm.nih.gov/pubmed/22110977
http://dx.doi.org/10.1155/2011/590780
Descripción
Sumario:This paper describes the design and validation of the OptiPush Biofeedback System, a commercially available, instrumented wheel system that records handrim biomechanics and provides stroke-by-stroke biofeedback and targeting for 11 propulsion variables. Testing of the system revealed accurate measurement of wheel angle (0.02% error), wheel speed (0.06% error), and handrim loads. The maximum errors in static force and torque measurements were 3.80% and 2.05%, respectively. Measured forces were also found to be highly linear (0.985 < slope < 1.011) and highly correlated to the reference forces (r (2) > .998). Dynamic measurements of planar forces (F (x) and F (y)) and axle torque also had low error (−0.96 N to 0.83 N for force and 0.10 Nm to 0.14 Nm for torque) and were highly correlated (r > .986) with expected force and torque values. Overall, the OptiPush Biofeedback System provides accurate measurement of wheel dynamics and handrim biomechanics and may be a useful tool for improving manual wheelchair propulsion.