Cargando…
New Inflammation-Related Biomarkers during Malaria Infection
Malaria is one of the most prevalent infectious diseases worldwide with more than 250 million cases and one million deaths each year. One of the well-characterized malarial-related molecules is hemozoin (HZ), which is a dark-brown crystal formed by the parasite and released into the host during the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197653/ https://www.ncbi.nlm.nih.gov/pubmed/22028888 http://dx.doi.org/10.1371/journal.pone.0026495 |
Sumario: | Malaria is one of the most prevalent infectious diseases worldwide with more than 250 million cases and one million deaths each year. One of the well-characterized malarial-related molecules is hemozoin (HZ), which is a dark-brown crystal formed by the parasite and released into the host during the burst of infected red blood cells. HZ has a stimulatory effect on the host immune system such as its ability to induce pro-inflammatory mediators responsible for some of the malaria related clinical symptoms such as fever. However, the host serum proteins interacting with malarial HZ as well as how this interaction modifies its recognition by phagocytes remained elusive. In the actual study, using proteomic liquid chromatographic mass spectrometry (LC-MS/MS) and immunochemical approaches, we compared the serum protein profiles of malaria patients and healthy individuals. Particularly, we utilized the malarial HZ itself to capture serum proteins capable to bind to HZ, enabling us to identify several proteins such as apolipoprotein E (ApoE), serum amyloid A (SAA), gelsolin, complement factor H and fibrinogen that were found to differ among healthy and malaria individual. Of particular interest is LPS binding protein (LBP), which is reported herein for the first time in the context of malaria. LBP is usually produced during innate inflammatory response to gram-negative bacterial infections. The exact role of these biomarkers and acute phase responses in malaria in general and HZ in particular remains to be investigated. The identification of these inflammation-related biomarkers in malaria paves the way to potentially utilize them as diagnostic and therapeutic targets. |
---|