Cargando…
Cyclic ADP Ribose-Dependent Ca(2+) Release by Group I Metabotropic Glutamate Receptors in Acutely Dissociated Rat Hippocampal Neurons
Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5) exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+). In this study, we characterized the cellular mechanisms underlying Ca(2+) mobilization induced by (RS)-3,5-dihyd...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197673/ https://www.ncbi.nlm.nih.gov/pubmed/22028929 http://dx.doi.org/10.1371/journal.pone.0026625 |
Sumario: | Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5) exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+). In this study, we characterized the cellular mechanisms underlying Ca(2+) mobilization induced by (RS)-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist) in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+) from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR), while the PLC/IP(3) signaling pathway was not involved in Ca(2+) mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4), led to transient Ca(2+) mobilization by mGluR5 and Ca(2+) influx through L-type Ca(2+) channels. We found no evidence that mGluR5-mediated Ca(2+) release and Ca(2+) influx through L-type Ca(2+) channels interact to generate supralinear Ca(2+) transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+) mobilization by mGluR5 in the somata of hippocampal neurons. |
---|