Cargando…
Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis
Endocannabinoids inhibit hypothalamic-pituitary-adrenal (HPA) axis activity; however, the neural substrates and pathways subserving this effect are not well characterized. The amygdala is a forebrain structure that provides excitatory drive to the HPA axis under conditions of stress. The aim of this...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197779/ https://www.ncbi.nlm.nih.gov/pubmed/19710634 http://dx.doi.org/10.1038/npp.2009.114 |
_version_ | 1782214358933176320 |
---|---|
author | Hill, Matthew N. McLaughlin, Ryan J. Morrish, Anna C. Viau, Victor Floresco, Stan B. Hillard, Cecilia J. Gorzalka, Boris B. |
author_facet | Hill, Matthew N. McLaughlin, Ryan J. Morrish, Anna C. Viau, Victor Floresco, Stan B. Hillard, Cecilia J. Gorzalka, Boris B. |
author_sort | Hill, Matthew N. |
collection | PubMed |
description | Endocannabinoids inhibit hypothalamic-pituitary-adrenal (HPA) axis activity; however, the neural substrates and pathways subserving this effect are not well characterized. The amygdala is a forebrain structure that provides excitatory drive to the HPA axis under conditions of stress. The aim of this study was to determine the contribution of endocannabinoid signaling within distinct amygdalar nuclei to activation of the HPA axis in response to psychological stress. Exposure of rats to 30 min restraint stress increased the hydrolytic activity of fatty acid amide hydrolase (FAAH) and concurrently decreased content of the endocannabinoid/CB(1) receptor ligand N-arachidonylethanolamine (anandamide; AEA) throughout the amygdala. In stressed rats, AEA content in the amygdala was inversely correlated with serum corticosterone concentrations. Pharmacological inhibition of FAAH activity within the basolateral amygdala complex (BLA) attenuated stress-induced corticosterone secretion; this effect was blocked by co-administration of the CB(1) receptor antagonist AM251, suggesting that stress-induced decreases in CB(1) receptor activation by AEA contribute to activation of the neuroendocrine stress response. Local administration into the BLA of a CB(1) receptor agonist significantly reduced stress-induced corticosterone secretion, while administration of a CB(1) receptor antagonist increased corticosterone secretion. Taken together, these findings suggest that the degree to which stressful stimuli reduce amygdalar AEA/CB1 receptor signaling contributes to the magnitude of the HPA response. |
format | Online Article Text |
id | pubmed-3197779 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-31977792011-10-21 Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis Hill, Matthew N. McLaughlin, Ryan J. Morrish, Anna C. Viau, Victor Floresco, Stan B. Hillard, Cecilia J. Gorzalka, Boris B. Neuropsychopharmacology Article Endocannabinoids inhibit hypothalamic-pituitary-adrenal (HPA) axis activity; however, the neural substrates and pathways subserving this effect are not well characterized. The amygdala is a forebrain structure that provides excitatory drive to the HPA axis under conditions of stress. The aim of this study was to determine the contribution of endocannabinoid signaling within distinct amygdalar nuclei to activation of the HPA axis in response to psychological stress. Exposure of rats to 30 min restraint stress increased the hydrolytic activity of fatty acid amide hydrolase (FAAH) and concurrently decreased content of the endocannabinoid/CB(1) receptor ligand N-arachidonylethanolamine (anandamide; AEA) throughout the amygdala. In stressed rats, AEA content in the amygdala was inversely correlated with serum corticosterone concentrations. Pharmacological inhibition of FAAH activity within the basolateral amygdala complex (BLA) attenuated stress-induced corticosterone secretion; this effect was blocked by co-administration of the CB(1) receptor antagonist AM251, suggesting that stress-induced decreases in CB(1) receptor activation by AEA contribute to activation of the neuroendocrine stress response. Local administration into the BLA of a CB(1) receptor agonist significantly reduced stress-induced corticosterone secretion, while administration of a CB(1) receptor antagonist increased corticosterone secretion. Taken together, these findings suggest that the degree to which stressful stimuli reduce amygdalar AEA/CB1 receptor signaling contributes to the magnitude of the HPA response. 2009-08-26 2009-12 /pmc/articles/PMC3197779/ /pubmed/19710634 http://dx.doi.org/10.1038/npp.2009.114 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Hill, Matthew N. McLaughlin, Ryan J. Morrish, Anna C. Viau, Victor Floresco, Stan B. Hillard, Cecilia J. Gorzalka, Boris B. Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title | Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title_full | Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title_fullStr | Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title_full_unstemmed | Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title_short | Suppression of Amygdalar Endocannabinoid Signaling by Stress Contributes to Activation of the Hypothalamic-Pituitary-Adrenal Axis |
title_sort | suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197779/ https://www.ncbi.nlm.nih.gov/pubmed/19710634 http://dx.doi.org/10.1038/npp.2009.114 |
work_keys_str_mv | AT hillmatthewn suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT mclaughlinryanj suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT morrishannac suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT viauvictor suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT florescostanb suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT hillardceciliaj suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis AT gorzalkaborisb suppressionofamygdalarendocannabinoidsignalingbystresscontributestoactivationofthehypothalamicpituitaryadrenalaxis |