Cargando…

Normal Glucagon Signaling and β-Cell Function After Near-Total α-Cell Ablation in Adult Mice

OBJECTIVE: To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS: We generated a new transgenic model allowing near-total α-cell re...

Descripción completa

Detalles Bibliográficos
Autores principales: Thorel, Fabrizio, Damond, Nicolas, Chera, Simona, Wiederkehr, Andreas, Thorens, Bernard, Meda, Paolo, Wollheim, Claes B., Herrera, Pedro L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198058/
https://www.ncbi.nlm.nih.gov/pubmed/21926270
http://dx.doi.org/10.2337/db11-0876
Descripción
Sumario:OBJECTIVE: To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS: We generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss. RESULTS: Adult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions. CONCLUSIONS: An extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.