Cargando…
Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development
OBJECTIVE: The impact of type 1 diabetes mellitus (T1DM) on the developing central nervous system is not well understood. Cross-sectional, retrospective studies suggest that exposure to glycemic extremes during development is harmful to brain structure in youth with T1DM. However, these studies cann...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198062/ https://www.ncbi.nlm.nih.gov/pubmed/21953611 http://dx.doi.org/10.2337/db11-0589 |
_version_ | 1782214374542278656 |
---|---|
author | Perantie, Dana C. Koller, Jonathan M. Weaver, Patrick M. Lugar, Heather M. Black, Kevin J. White, Neil H. Hershey, Tamara |
author_facet | Perantie, Dana C. Koller, Jonathan M. Weaver, Patrick M. Lugar, Heather M. Black, Kevin J. White, Neil H. Hershey, Tamara |
author_sort | Perantie, Dana C. |
collection | PubMed |
description | OBJECTIVE: The impact of type 1 diabetes mellitus (T1DM) on the developing central nervous system is not well understood. Cross-sectional, retrospective studies suggest that exposure to glycemic extremes during development is harmful to brain structure in youth with T1DM. However, these studies cannot identify brain regions that change differentially over time depending on the degree of exposure to glycemic extremes. RESEARCH DESIGN AND METHODS: We performed a longitudinal, prospective structural neuroimaging study of youth with T1DM (n = 75; mean age = 12.5 years) and their nondiabetic siblings (n = 25; mean age = 12.5 years). Each participant was scanned twice, separated by 2 years. Blood glucose control measurements (HbA(1c), glucose meter results, and reports of severe hypoglycemia) were acquired during the 2-year follow-up. Sophisticated image registration algorithms were performed, followed by whole brain and voxel-wise statistical analyses of the change in gray and white matter volume, controlling for age, sex, and age of diabetes onset. RESULTS: The T1DM and nondiabetic control (NDC) sibling groups did not differ in whole brain or voxel-wise change over the 2-year follow-up. However, within the T1DM group, participants with more hyperglycemia had a greater decrease in whole brain gray matter compared with those with less hyperglycemia (P < 0.05). Participants who experienced severe hypoglycemia had greater decreases in occipital/parietal white matter volume compared with those with no severe hypoglycemia (P < 0.05) and compared with the NDC sibling group (P < 0.05). CONCLUSIONS: These results demonstrate that within diabetes, exposure to hyperglycemia and severe hypoglycemia may result in subtle deviation from normal developmental trajectories of the brain. |
format | Online Article Text |
id | pubmed-3198062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-31980622012-11-01 Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development Perantie, Dana C. Koller, Jonathan M. Weaver, Patrick M. Lugar, Heather M. Black, Kevin J. White, Neil H. Hershey, Tamara Diabetes Complications OBJECTIVE: The impact of type 1 diabetes mellitus (T1DM) on the developing central nervous system is not well understood. Cross-sectional, retrospective studies suggest that exposure to glycemic extremes during development is harmful to brain structure in youth with T1DM. However, these studies cannot identify brain regions that change differentially over time depending on the degree of exposure to glycemic extremes. RESEARCH DESIGN AND METHODS: We performed a longitudinal, prospective structural neuroimaging study of youth with T1DM (n = 75; mean age = 12.5 years) and their nondiabetic siblings (n = 25; mean age = 12.5 years). Each participant was scanned twice, separated by 2 years. Blood glucose control measurements (HbA(1c), glucose meter results, and reports of severe hypoglycemia) were acquired during the 2-year follow-up. Sophisticated image registration algorithms were performed, followed by whole brain and voxel-wise statistical analyses of the change in gray and white matter volume, controlling for age, sex, and age of diabetes onset. RESULTS: The T1DM and nondiabetic control (NDC) sibling groups did not differ in whole brain or voxel-wise change over the 2-year follow-up. However, within the T1DM group, participants with more hyperglycemia had a greater decrease in whole brain gray matter compared with those with less hyperglycemia (P < 0.05). Participants who experienced severe hypoglycemia had greater decreases in occipital/parietal white matter volume compared with those with no severe hypoglycemia (P < 0.05) and compared with the NDC sibling group (P < 0.05). CONCLUSIONS: These results demonstrate that within diabetes, exposure to hyperglycemia and severe hypoglycemia may result in subtle deviation from normal developmental trajectories of the brain. American Diabetes Association 2011-11 2011-10-17 /pmc/articles/PMC3198062/ /pubmed/21953611 http://dx.doi.org/10.2337/db11-0589 Text en © 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Complications Perantie, Dana C. Koller, Jonathan M. Weaver, Patrick M. Lugar, Heather M. Black, Kevin J. White, Neil H. Hershey, Tamara Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title | Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title_full | Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title_fullStr | Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title_full_unstemmed | Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title_short | Prospectively Determined Impact of Type 1 Diabetes on Brain Volume During Development |
title_sort | prospectively determined impact of type 1 diabetes on brain volume during development |
topic | Complications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198062/ https://www.ncbi.nlm.nih.gov/pubmed/21953611 http://dx.doi.org/10.2337/db11-0589 |
work_keys_str_mv | AT perantiedanac prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT kollerjonathanm prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT weaverpatrickm prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT lugarheatherm prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT blackkevinj prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT whiteneilh prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment AT hersheytamara prospectivelydeterminedimpactoftype1diabetesonbrainvolumeduringdevelopment |