Cargando…

Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells

Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders(1,2,3,4). However, the use of hIPSCs in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yusa, Kosuke, Rashid, S. Tamir, Strick-Marchand, Helene, Varela, Ignacio, Liu, Pei-Qi, Paschon, David E., Miranda, Elena, Ordóñez, Adriana, Hannan, Nick, Rouhani, Foad Jafari, Darche, Sylvie, Alexander, Graeme, Marciniak, Stefan J., Fusaki, Noemi, Hasegawa, Mamoru, Holmes, Michael C., Di Santo, James P., Lomas, David A., Bradley, Allan, Vallier, Ludovic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198846/
https://www.ncbi.nlm.nih.gov/pubmed/21993621
http://dx.doi.org/10.1038/nature10424
_version_ 1782214498304655360
author Yusa, Kosuke
Rashid, S. Tamir
Strick-Marchand, Helene
Varela, Ignacio
Liu, Pei-Qi
Paschon, David E.
Miranda, Elena
Ordóñez, Adriana
Hannan, Nick
Rouhani, Foad Jafari
Darche, Sylvie
Alexander, Graeme
Marciniak, Stefan J.
Fusaki, Noemi
Hasegawa, Mamoru
Holmes, Michael C.
Di Santo, James P.
Lomas, David A.
Bradley, Allan
Vallier, Ludovic
author_facet Yusa, Kosuke
Rashid, S. Tamir
Strick-Marchand, Helene
Varela, Ignacio
Liu, Pei-Qi
Paschon, David E.
Miranda, Elena
Ordóñez, Adriana
Hannan, Nick
Rouhani, Foad Jafari
Darche, Sylvie
Alexander, Graeme
Marciniak, Stefan J.
Fusaki, Noemi
Hasegawa, Mamoru
Holmes, Michael C.
Di Santo, James P.
Lomas, David A.
Bradley, Allan
Vallier, Ludovic
author_sort Yusa, Kosuke
collection PubMed
description Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders(1,2,3,4). However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications(3,5). The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome(6). Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)(7) and piggyBac(8,9) technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α(1)-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α(1)-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies.
format Online
Article
Text
id pubmed-3198846
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-31988462012-04-20 Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells Yusa, Kosuke Rashid, S. Tamir Strick-Marchand, Helene Varela, Ignacio Liu, Pei-Qi Paschon, David E. Miranda, Elena Ordóñez, Adriana Hannan, Nick Rouhani, Foad Jafari Darche, Sylvie Alexander, Graeme Marciniak, Stefan J. Fusaki, Noemi Hasegawa, Mamoru Holmes, Michael C. Di Santo, James P. Lomas, David A. Bradley, Allan Vallier, Ludovic Nature Article Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders(1,2,3,4). However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications(3,5). The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome(6). Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)(7) and piggyBac(8,9) technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α(1)-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α(1)-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies. 2011-10-12 /pmc/articles/PMC3198846/ /pubmed/21993621 http://dx.doi.org/10.1038/nature10424 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Yusa, Kosuke
Rashid, S. Tamir
Strick-Marchand, Helene
Varela, Ignacio
Liu, Pei-Qi
Paschon, David E.
Miranda, Elena
Ordóñez, Adriana
Hannan, Nick
Rouhani, Foad Jafari
Darche, Sylvie
Alexander, Graeme
Marciniak, Stefan J.
Fusaki, Noemi
Hasegawa, Mamoru
Holmes, Michael C.
Di Santo, James P.
Lomas, David A.
Bradley, Allan
Vallier, Ludovic
Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title_full Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title_fullStr Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title_full_unstemmed Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title_short Targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
title_sort targeted gene correction of α(1)-antitrypsin deficiency in induced pluripotent stem cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198846/
https://www.ncbi.nlm.nih.gov/pubmed/21993621
http://dx.doi.org/10.1038/nature10424
work_keys_str_mv AT yusakosuke targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT rashidstamir targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT strickmarchandhelene targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT varelaignacio targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT liupeiqi targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT paschondavide targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT mirandaelena targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT ordonezadriana targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT hannannick targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT rouhanifoadjafari targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT darchesylvie targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT alexandergraeme targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT marciniakstefanj targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT fusakinoemi targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT hasegawamamoru targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT holmesmichaelc targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT disantojamesp targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT lomasdavida targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT bradleyallan targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells
AT vallierludovic targetedgenecorrectionofa1antitrypsindeficiencyininducedpluripotentstemcells