Cargando…
Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis
BACKGROUND: Growing evidence suggests that epicardial adipose tissue (EAT) may play a key role in the pathogenesis and development of coronary artery disease (CAD) by producing several inflammatory adipokines. Chemerin, a novel adipokine, has been reported to be involved in regulating immune respons...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198902/ https://www.ncbi.nlm.nih.gov/pubmed/21981776 http://dx.doi.org/10.1186/1475-2840-10-87 |
Sumario: | BACKGROUND: Growing evidence suggests that epicardial adipose tissue (EAT) may play a key role in the pathogenesis and development of coronary artery disease (CAD) by producing several inflammatory adipokines. Chemerin, a novel adipokine, has been reported to be involved in regulating immune responses and glucolipid metabolism. Given these properties, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis. In this study, we sought to determine the relationship of chemerin expression in EAT and the severity of coronary atherosclerosis in Han Chinese patients. METHODS: Serums and adipose tissue biopsies (epicardial and thoracic subcutaneous) were obtained from CAD (n = 37) and NCAD (n = 16) patients undergoing elective cardiac surgery. Gensini score was used to assess the severity of CAD. Serum levels of chemerin, adiponectin and insulin were measured by ELISA. Chemerin protein expression in adipose tissue was detected by immunohistochemistry. The mRNA levels of chemerin, chemR23, adiponectin and TNF-alpha in adipose tissue were detected by RT-PCR. RESULTS: We found that EAT of CAD group showed significantly higher levels of chemerin and TNF-alpha mRNA, and significantly lower level of adiponectin mRNA than that of NCAD patients. In CAD group, significantly higher levels of chemerin mRNA and protein were observed in EAT than in paired subcutaneous adipose tissue (SAT), whereas such significant difference was not found in NCAD group. Chemerin mRNA expression in EAT was positively correlated with Gensini score (r = 0.365, P < 0.05), moreover, this correlation remained statistically significant (r = 0.357, P < 0.05) after adjusting for age, gender, BMI and waist circumference. Chemerin mRNA expression in EAT was also positively correlated with BMI (r = 0.305, P < 0.05), waist circumference (r = 0.384, P < 0.01), fasting blood glucose (r = 0.334, P < 0.05) and negatively correlated with adiponectin mRNA expression in EAT (r = -0.322, P < 0.05). However, there were no significant differences in the serum levels of chemerin or adiponectin between the two groups. Likewise, neither serum chemerin nor serum adiponectin was associated with Gensini score (P > 0.05). CONCLUSIONS: The expressions of chemerin mRNA and protein are significantly higher in EAT from patients with CAD in Han Chinese patients. Furthermore, the severity of coronary atherosclerosis is positive correlated with the level of chemerin mRNA in EAT rather than its circulating level. |
---|