Cargando…
Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae
BACKGROUND: During copulation, the major Afro-tropical malaria vector Anopheles gambiae s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the "mating plug"). These proteins are postulated to function as important modulators of female post-mating responses....
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199272/ https://www.ncbi.nlm.nih.gov/pubmed/21978124 http://dx.doi.org/10.1186/1471-2148-11-292 |
_version_ | 1782214554283933696 |
---|---|
author | Mancini, Emiliano Baldini, Francesco Tammaro, Federica Calzetta, Maria Serrao, Aurelio George, Phillip Morlais, Isabelle Masiga, Daniel Sharakhov, Igor V Rogers, David W Catteruccia, Flaminia della Torre, Alessandra |
author_facet | Mancini, Emiliano Baldini, Francesco Tammaro, Federica Calzetta, Maria Serrao, Aurelio George, Phillip Morlais, Isabelle Masiga, Daniel Sharakhov, Igor V Rogers, David W Catteruccia, Flaminia della Torre, Alessandra |
author_sort | Mancini, Emiliano |
collection | PubMed |
description | BACKGROUND: During copulation, the major Afro-tropical malaria vector Anopheles gambiae s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the "mating plug"). These proteins are postulated to function as important modulators of female post-mating responses. To understand the role of selective forces underlying the evolution of these proteins in the A. gambiae complex, we carried out an evolutionary analysis of gene sequence and expression divergence on a pair of paralog genes called AgAcp34A-1 and AgAcp34A-2. These encode MAG-specific proteins which, based on homology with Drosophila, have been hypothesized to play a role in sperm viability and function. RESULTS: Genetic analysis of 6 species of the A. gambiae complex revealed the existence of a third paralog (68-78% of identity), that we named AgAcp34A-3. FISH assays showed that this gene maps in the same division (34A) of chromosome-3R as the other two paralogs. In particular, immuno-fluorescence assays targeting the C-terminals of AgAcp34A-2 and AgAcp34A-3 revealed that these two proteins are localized in the posterior part of the MAG and concentrated at the apical portion of the mating plug. When transferred to females, this part of the plug lies in proximity to the duct connecting the spermatheca to the uterus, suggesting a potential role for these proteins in regulating sperm motility. AgAcp34A-3 is more polymorphic than the other two paralogs, possibly because of relaxation of purifying selection. Since both unequal crossing-over and gene conversion likely homogenized the members of this gene family, the interpretation of the evolutionary patterns is not straightforward. Although several haplotypes of the three paralogs are shared by most A. gambiae s.l. species, some fixed species-specific replacements (mainly placed in the N- and C-terminal portions of the secreted peptides) were also observed, suggesting some lineage-specific adaptation. CONCLUSIONS: Progress in understanding the signaling cascade in the A. gambiae reproductive pathway will elucidate the interaction of this MAG-specific protein family with their female counterparts. This knowledge will allow a better evaluation of the relative importance of genes involved in the reproductive isolation and fertility of A. gambiae species and could help the interpretation of the observed evolutionary patterns. |
format | Online Article Text |
id | pubmed-3199272 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-31992722011-10-24 Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae Mancini, Emiliano Baldini, Francesco Tammaro, Federica Calzetta, Maria Serrao, Aurelio George, Phillip Morlais, Isabelle Masiga, Daniel Sharakhov, Igor V Rogers, David W Catteruccia, Flaminia della Torre, Alessandra BMC Evol Biol Research Article BACKGROUND: During copulation, the major Afro-tropical malaria vector Anopheles gambiae s.s. transfers male accessory gland (MAG) proteins to females as a solid mass (i.e. the "mating plug"). These proteins are postulated to function as important modulators of female post-mating responses. To understand the role of selective forces underlying the evolution of these proteins in the A. gambiae complex, we carried out an evolutionary analysis of gene sequence and expression divergence on a pair of paralog genes called AgAcp34A-1 and AgAcp34A-2. These encode MAG-specific proteins which, based on homology with Drosophila, have been hypothesized to play a role in sperm viability and function. RESULTS: Genetic analysis of 6 species of the A. gambiae complex revealed the existence of a third paralog (68-78% of identity), that we named AgAcp34A-3. FISH assays showed that this gene maps in the same division (34A) of chromosome-3R as the other two paralogs. In particular, immuno-fluorescence assays targeting the C-terminals of AgAcp34A-2 and AgAcp34A-3 revealed that these two proteins are localized in the posterior part of the MAG and concentrated at the apical portion of the mating plug. When transferred to females, this part of the plug lies in proximity to the duct connecting the spermatheca to the uterus, suggesting a potential role for these proteins in regulating sperm motility. AgAcp34A-3 is more polymorphic than the other two paralogs, possibly because of relaxation of purifying selection. Since both unequal crossing-over and gene conversion likely homogenized the members of this gene family, the interpretation of the evolutionary patterns is not straightforward. Although several haplotypes of the three paralogs are shared by most A. gambiae s.l. species, some fixed species-specific replacements (mainly placed in the N- and C-terminal portions of the secreted peptides) were also observed, suggesting some lineage-specific adaptation. CONCLUSIONS: Progress in understanding the signaling cascade in the A. gambiae reproductive pathway will elucidate the interaction of this MAG-specific protein family with their female counterparts. This knowledge will allow a better evaluation of the relative importance of genes involved in the reproductive isolation and fertility of A. gambiae species and could help the interpretation of the observed evolutionary patterns. BioMed Central 2011-10-06 /pmc/articles/PMC3199272/ /pubmed/21978124 http://dx.doi.org/10.1186/1471-2148-11-292 Text en Copyright ©2011 Mancini et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mancini, Emiliano Baldini, Francesco Tammaro, Federica Calzetta, Maria Serrao, Aurelio George, Phillip Morlais, Isabelle Masiga, Daniel Sharakhov, Igor V Rogers, David W Catteruccia, Flaminia della Torre, Alessandra Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title | Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title_full | Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title_fullStr | Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title_full_unstemmed | Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title_short | Molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the African malaria vector Anopheles gambiae |
title_sort | molecular characterization and evolution of a gene family encoding male-specific reproductive proteins in the african malaria vector anopheles gambiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199272/ https://www.ncbi.nlm.nih.gov/pubmed/21978124 http://dx.doi.org/10.1186/1471-2148-11-292 |
work_keys_str_mv | AT manciniemiliano molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT baldinifrancesco molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT tammarofederica molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT calzettamaria molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT serraoaurelio molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT georgephillip molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT morlaisisabelle molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT masigadaniel molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT sharakhovigorv molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT rogersdavidw molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT catterucciaflaminia molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae AT dellatorrealessandra molecularcharacterizationandevolutionofagenefamilyencodingmalespecificreproductiveproteinsintheafricanmalariavectoranophelesgambiae |