Cargando…
Apical membrane rupture and backward bile flooding in acetaminophen-induced hepatocyte necrosis
Morphological changes of hepatocyte death have so far only been described on cells in culture or in tissue sections. Using a high-resolution and high-magnification multiphoton microscopic system, we recorded in living mice serial changes of acetaminophen (APAP)-induced hepatocyte necrosis in relevan...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199717/ https://www.ncbi.nlm.nih.gov/pubmed/21776021 http://dx.doi.org/10.1038/cddis.2011.68 |
Sumario: | Morphological changes of hepatocyte death have so far only been described on cells in culture or in tissue sections. Using a high-resolution and high-magnification multiphoton microscopic system, we recorded in living mice serial changes of acetaminophen (APAP)-induced hepatocyte necrosis in relevance to metabolism of a fluorogenic bile solute. Initial changes of hepatocyte injury included basal membrane disruption and loss of mitochondrial membrane potential. An overwhelming event of rupture at adjacent apical membrane resulting in flooding of bile into these hepatocytes might ensue. Belbs formed on basal membrane and then dislodged into the sinusoid circulation. Transmission electron microscopy disclosed a necrotic hepatocyte depicting well the changes after apical membrane rupture and bile flooding. Administration of the antidote N-acetylcysteine dramatically reduced the occurrence of apical membrane rupture. The present results demonstrated a hidden but critical step of apical membrane rupture leading to irreversible APAP-induced hepatocyte injury. |
---|