Cargando…
Relational grounding facilitates development of scientifically useful multiscale models
We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200146/ https://www.ncbi.nlm.nih.gov/pubmed/21951817 http://dx.doi.org/10.1186/1742-4682-8-35 |
_version_ | 1782214658025848832 |
---|---|
author | Hunt, C Anthony Ropella, Glen EP Lam, Tai ning Gewitz, Andrew D |
author_facet | Hunt, C Anthony Ropella, Glen EP Lam, Tai ning Gewitz, Andrew D |
author_sort | Hunt, C Anthony |
collection | PubMed |
description | We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding. |
format | Online Article Text |
id | pubmed-3200146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32001462011-10-25 Relational grounding facilitates development of scientifically useful multiscale models Hunt, C Anthony Ropella, Glen EP Lam, Tai ning Gewitz, Andrew D Theor Biol Med Model Review We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding. BioMed Central 2011-09-27 /pmc/articles/PMC3200146/ /pubmed/21951817 http://dx.doi.org/10.1186/1742-4682-8-35 Text en Copyright ©2011 Hunt et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Hunt, C Anthony Ropella, Glen EP Lam, Tai ning Gewitz, Andrew D Relational grounding facilitates development of scientifically useful multiscale models |
title | Relational grounding facilitates development of scientifically useful multiscale models |
title_full | Relational grounding facilitates development of scientifically useful multiscale models |
title_fullStr | Relational grounding facilitates development of scientifically useful multiscale models |
title_full_unstemmed | Relational grounding facilitates development of scientifically useful multiscale models |
title_short | Relational grounding facilitates development of scientifically useful multiscale models |
title_sort | relational grounding facilitates development of scientifically useful multiscale models |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200146/ https://www.ncbi.nlm.nih.gov/pubmed/21951817 http://dx.doi.org/10.1186/1742-4682-8-35 |
work_keys_str_mv | AT huntcanthony relationalgroundingfacilitatesdevelopmentofscientificallyusefulmultiscalemodels AT ropellaglenep relationalgroundingfacilitatesdevelopmentofscientificallyusefulmultiscalemodels AT lamtaining relationalgroundingfacilitatesdevelopmentofscientificallyusefulmultiscalemodels AT gewitzandrewd relationalgroundingfacilitatesdevelopmentofscientificallyusefulmultiscalemodels |