Cargando…

DCM for complex-valued data: Cross-spectra, coherence and phase-delays

This note describes an extension of Bayesian model inversion procedures for the Dynamic Causal Modeling (DCM) of complex-valued data. Modeling complex data can be particularly useful in the analysis of multivariate ergodic (stationary) time-series. We illustrate this with a generalization of DCM for...

Descripción completa

Detalles Bibliográficos
Autores principales: Friston, K.J., Bastos, A., Litvak, V., Stephan, K.E., Fries, P., Moran, R.J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200431/
https://www.ncbi.nlm.nih.gov/pubmed/21820062
http://dx.doi.org/10.1016/j.neuroimage.2011.07.048
Descripción
Sumario:This note describes an extension of Bayesian model inversion procedures for the Dynamic Causal Modeling (DCM) of complex-valued data. Modeling complex data can be particularly useful in the analysis of multivariate ergodic (stationary) time-series. We illustrate this with a generalization of DCM for steady-state responses that models both the real and imaginary parts of sample cross-spectra. DCM allows one to infer underlying biophysical parameters generating data (like synaptic time constants, connection strengths and conduction delays). Because transfer functions and complex cross-spectra can be generated from these parameters, one can also describe the implicit system architecture in terms of conventional (linear systems) measures; like coherence, phase-delay or cross-correlation functions. Crucially, these measures can be derived in both sensor and source-space. In other words, one can examine the cross-correlation or phase-delay functions between hidden neuronal sources using non-invasive data and relate these functions to synaptic parameters and neuronal conduction delays. We illustrate these points using local field potential recordings from the subthalamic nucleus and globus pallidus, with a special focus on the relationship between conduction delays and the ensuing phase relationships and cross-correlation time lags between population activities.