Cargando…
Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria
The role of the IgE–FcεRI complex in malaria severity in Plasmodium falciparum–hosting patients is unknown. We demonstrate that mice genetically deficient for the high-affinity receptor for IgE (FcεRIα-KO) or for IgE (IgE-KO) are less susceptible to experimental cerebral malaria (ECM) after infectio...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201201/ https://www.ncbi.nlm.nih.gov/pubmed/21967768 http://dx.doi.org/10.1084/jem.20110845 |
Sumario: | The role of the IgE–FcεRI complex in malaria severity in Plasmodium falciparum–hosting patients is unknown. We demonstrate that mice genetically deficient for the high-affinity receptor for IgE (FcεRIα-KO) or for IgE (IgE-KO) are less susceptible to experimental cerebral malaria (ECM) after infection with Plasmodium berghei (PbANKA). Mast cells and basophils, which are the classical IgE-expressing effector cells, are not involved in disease as mast cell–deficient and basophil-depleted mice developed a disease similar to wild-type mice. However, we show the emergence of an FcεRI(+) neutrophil population, which is not observed in mice hosting a non–ECM-inducing PbNK65 parasite strain. Depletion of this FcεRI(+) neutrophil population prevents ECM, whereas transfer of this population into FcεRIα-KO mice restores ECM susceptibility. FcεRI(+) neutrophils preferentially home to the brain and induce elevated levels of proinflammatory cytokines. These data define a new pathogenic mechanism of ECM and implicate an FcεRI-expressing neutrophil subpopulation in malaria disease severity. |
---|