Cargando…

RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites

Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be kno...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, David B.F., Xu, Jianfeng, Shen, Zhouxin, Takimoto, Jeffrey K., Schultz, Matthew D., Schmitz, Robert J., Ecker, Joseph R., Briggs, Steven P., Wang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201715/
https://www.ncbi.nlm.nih.gov/pubmed/21926996
http://dx.doi.org/10.1038/nchembio.657
_version_ 1782214922462035968
author Johnson, David B.F.
Xu, Jianfeng
Shen, Zhouxin
Takimoto, Jeffrey K.
Schultz, Matthew D.
Schmitz, Robert J.
Ecker, Joseph R.
Briggs, Steven P.
Wang, Lei
author_facet Johnson, David B.F.
Xu, Jianfeng
Shen, Zhouxin
Takimoto, Jeffrey K.
Schultz, Matthew D.
Schmitz, Robert J.
Ecker, Joseph R.
Briggs, Steven P.
Wang, Lei
author_sort Johnson, David B.F.
collection PubMed
description Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving novel protein functions by enabling Uaa incorporation at multiple sites.
format Online
Article
Text
id pubmed-3201715
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-32017152012-05-01 RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites Johnson, David B.F. Xu, Jianfeng Shen, Zhouxin Takimoto, Jeffrey K. Schultz, Matthew D. Schmitz, Robert J. Ecker, Joseph R. Briggs, Steven P. Wang, Lei Nat Chem Biol Article Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but the efficiency is low possibly due to competition from release factors, limiting the power and scope of this technology. Here we show that the reportedly essential release factor 1 can be knocked out from Escherichia coli by fixing release factor 2. The resultant strain JX33 is stable and independent, and reassigns UAG from a stop signal to an amino acid when a UAG-decoding tRNA/synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving novel protein functions by enabling Uaa incorporation at multiple sites. 2011-09-18 /pmc/articles/PMC3201715/ /pubmed/21926996 http://dx.doi.org/10.1038/nchembio.657 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Johnson, David B.F.
Xu, Jianfeng
Shen, Zhouxin
Takimoto, Jeffrey K.
Schultz, Matthew D.
Schmitz, Robert J.
Ecker, Joseph R.
Briggs, Steven P.
Wang, Lei
RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title_full RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title_fullStr RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title_full_unstemmed RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title_short RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
title_sort rf1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201715/
https://www.ncbi.nlm.nih.gov/pubmed/21926996
http://dx.doi.org/10.1038/nchembio.657
work_keys_str_mv AT johnsondavidbf rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT xujianfeng rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT shenzhouxin rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT takimotojeffreyk rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT schultzmatthewd rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT schmitzrobertj rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT eckerjosephr rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT briggsstevenp rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites
AT wanglei rf1knockoutallowsribosomalincorporationofunnaturalaminoacidsatmultiplesites