Cargando…
Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis
BACKGROUND: Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202236/ https://www.ncbi.nlm.nih.gov/pubmed/21985298 http://dx.doi.org/10.1186/1465-9921-12-134 |
_version_ | 1782214988324143104 |
---|---|
author | Londhe, Vedang A Maisonet, Tiffany M Lopez, Benjamin Jeng, Jade-Ming Xiao, Jing Li, Changgong Minoo, Parviz |
author_facet | Londhe, Vedang A Maisonet, Tiffany M Lopez, Benjamin Jeng, Jade-Ming Xiao, Jing Li, Changgong Minoo, Parviz |
author_sort | Londhe, Vedang A |
collection | PubMed |
description | BACKGROUND: Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. METHODS: We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. RESULTS: Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. CONCLUSIONS: These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF. |
format | Online Article Text |
id | pubmed-3202236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32022362011-10-27 Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis Londhe, Vedang A Maisonet, Tiffany M Lopez, Benjamin Jeng, Jade-Ming Xiao, Jing Li, Changgong Minoo, Parviz Respir Res Research BACKGROUND: Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. METHODS: We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. RESULTS: Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. CONCLUSIONS: These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF. BioMed Central 2011 2011-10-10 /pmc/articles/PMC3202236/ /pubmed/21985298 http://dx.doi.org/10.1186/1465-9921-12-134 Text en Copyright ©2011 Londhe et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Londhe, Vedang A Maisonet, Tiffany M Lopez, Benjamin Jeng, Jade-Ming Xiao, Jing Li, Changgong Minoo, Parviz Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title | Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title_full | Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title_fullStr | Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title_full_unstemmed | Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title_short | Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis |
title_sort | conditional deletion of epithelial ikkβ impairs alveolar formation through apoptosis and decreased vegf expression during early mouse lung morphogenesis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202236/ https://www.ncbi.nlm.nih.gov/pubmed/21985298 http://dx.doi.org/10.1186/1465-9921-12-134 |
work_keys_str_mv | AT londhevedanga conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT maisonettiffanym conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT lopezbenjamin conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT jengjademing conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT xiaojing conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT lichanggong conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis AT minooparviz conditionaldeletionofepithelialikkbimpairsalveolarformationthroughapoptosisanddecreasedvegfexpressionduringearlymouselungmorphogenesis |