Cargando…

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I...

Descripción completa

Detalles Bibliográficos
Autor principal: Lee, Won Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Association of Immunologists 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202622/
https://www.ncbi.nlm.nih.gov/pubmed/22039371
http://dx.doi.org/10.4110/in.2011.11.4.223
Descripción
Sumario:Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-κB-target genes such as TNF-α and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.