Cargando…

Molecular Analysis of the Interaction of the Snake Venom Rhodocytin with the Platelet Receptor CLEC-2

The Malayan pit viper, Calloselasma rhodostoma, produces a potent venom toxin, rhodocytin (aggretin) which causes platelet aggregation. Rhodocytin is a ligand for the receptor CLEC-2 on the surface of platelets. The interaction of these two molecules initiates a signaling pathway which results in pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Aleksandra A., O’Callaghan, Christopher A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202865/
https://www.ncbi.nlm.nih.gov/pubmed/22069753
http://dx.doi.org/10.3390/toxins3080991
Descripción
Sumario:The Malayan pit viper, Calloselasma rhodostoma, produces a potent venom toxin, rhodocytin (aggretin) which causes platelet aggregation. Rhodocytin is a ligand for the receptor CLEC-2 on the surface of platelets. The interaction of these two molecules initiates a signaling pathway which results in platelet activation and aggregation. We have previously solved the crystal structures of CLEC-2 and of rhodocytin, and have proposed models by which tetrameric rhodocytin may interact with either two monomers of CLEC-2, or with one or two copies of dimeric CLEC-2. In the current study we use a range of approaches to analyze the molecular interfaces and dynamics involved in the models of the interaction of rhodocytin with either one or two copies of dimeric CLEC-2, and their implications for clustering of CLEC-2 on the platelet surface.