Cargando…
Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning
Reinforcement learning (RL) provides an influential characterization of the brain's mechanisms for learning to make advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables efficient learning. We consider this problem through the lens of...
Autores principales: | Gustafson, Nicholas J., Daw, Nathaniel D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203050/ https://www.ncbi.nlm.nih.gov/pubmed/22046115 http://dx.doi.org/10.1371/journal.pcbi.1002235 |
Ejemplares similares
-
Linear reinforcement learning in planning, grid fields, and cognitive control
por: Piray, Payam, et al.
Publicado: (2021) -
A non-spatial account of place and grid cells based on clustering models of concept learning
por: Mok, Robert M., et al.
Publicado: (2019) -
A model for grid cells where spatially correlated place cells compete for the grid map nodes
por: Castro, Luísa, et al.
Publicado: (2013) -
The geometry of geodesics
por: Busemann, Herbert
Publicado: (1955) -
The geometry of geodesics /
por: Busemann, Herbert, 1905-1994
Publicado: (1955)