Cargando…
A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields
Sparse coding algorithms trained on natural images can accurately predict the features that excite visual cortical neurons, but it is not known whether such codes can be learned using biologically realistic plasticity rules. We have developed a biophysically motivated spiking network, relying solely...
Autores principales: | Zylberberg, Joel, Murphy, Jason Timothy, DeWeese, Michael Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203062/ https://www.ncbi.nlm.nih.gov/pubmed/22046123 http://dx.doi.org/10.1371/journal.pcbi.1002250 |
Ejemplares similares
-
Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images
por: Zylberberg, Joel, et al.
Publicado: (2013) -
Inhibitory interneurons enable sparse code formation in a spiking circuit model of V1
por: King, Paul D, et al.
Publicado: (2012) -
Forming cooperative representations via solipsistic synaptic plasticity rules
por: Zylberberg, Joel, et al.
Publicado: (2011) -
Sparse Codes for Speech Predict Spectrotemporal Receptive Fields in the Inferior Colliculus
por: Carlson, Nicole L., et al.
Publicado: (2012) -
The Impact of Sparse Coding on Memory Lifetimes in Simple and Complex Models of Synaptic Plasticity
por: Elliott, Terry
Publicado: (2022)