Cargando…
Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models
Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To ov...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203063/ https://www.ncbi.nlm.nih.gov/pubmed/22046122 http://dx.doi.org/10.1371/journal.pcbi.1002249 |
_version_ | 1782215063403233280 |
---|---|
author | Fitzgerald, Jeffrey D. Rowekamp, Ryan J. Sincich, Lawrence C. Sharpee, Tatyana O. |
author_facet | Fitzgerald, Jeffrey D. Rowekamp, Ryan J. Sincich, Lawrence C. Sharpee, Tatyana O. |
author_sort | Fitzgerald, Jeffrey D. |
collection | PubMed |
description | Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces. |
format | Online Article Text |
id | pubmed-3203063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-32030632011-11-01 Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models Fitzgerald, Jeffrey D. Rowekamp, Ryan J. Sincich, Lawrence C. Sharpee, Tatyana O. PLoS Comput Biol Research Article Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces. Public Library of Science 2011-10-27 /pmc/articles/PMC3203063/ /pubmed/22046122 http://dx.doi.org/10.1371/journal.pcbi.1002249 Text en Fitzgerald et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fitzgerald, Jeffrey D. Rowekamp, Ryan J. Sincich, Lawrence C. Sharpee, Tatyana O. Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title | Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title_full | Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title_fullStr | Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title_full_unstemmed | Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title_short | Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models |
title_sort | second order dimensionality reduction using minimum and maximum mutual information models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203063/ https://www.ncbi.nlm.nih.gov/pubmed/22046122 http://dx.doi.org/10.1371/journal.pcbi.1002249 |
work_keys_str_mv | AT fitzgeraldjeffreyd secondorderdimensionalityreductionusingminimumandmaximummutualinformationmodels AT rowekampryanj secondorderdimensionalityreductionusingminimumandmaximummutualinformationmodels AT sincichlawrencec secondorderdimensionalityreductionusingminimumandmaximummutualinformationmodels AT sharpeetatyanao secondorderdimensionalityreductionusingminimumandmaximummutualinformationmodels |