Cargando…
Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models
Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To ov...
Autores principales: | Fitzgerald, Jeffrey D., Rowekamp, Ryan J., Sincich, Lawrence C., Sharpee, Tatyana O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203063/ https://www.ncbi.nlm.nih.gov/pubmed/22046122 http://dx.doi.org/10.1371/journal.pcbi.1002249 |
Ejemplares similares
-
Minimal Models of Multidimensional Computations
por: Fitzgerald, Jeffrey D., et al.
Publicado: (2011) -
Analyzing multicomponent receptive fields from neural responses to natural stimuli
por: Rowekamp, Ryan, et al.
Publicado: (2011) -
Cross-orientation suppression in visual area V2
por: Rowekamp, Ryan J., et al.
Publicado: (2017) -
Mutual Information between Order Book Layers
por: Libman, Daniel, et al.
Publicado: (2022) -
Quantifying Data Dependencies with Rényi Mutual Information and Minimum Spanning Trees
por: Eggels, Anne, et al.
Publicado: (2019)