Cargando…
Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive subjects
BACKGROUND: The subjects in EEG-Brain computer interface (BCI) system experience difficulties when attempting to obtain the consistent performance of the actual movement by motor imagery alone. It is necessary to find the optimal conditions and stimuli combinations that affect the performance factor...
Autores principales: | Choi, Donghag, Ryu, Yeonsoo, Lee, Youngbum, Lee, Myoungho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203085/ https://www.ncbi.nlm.nih.gov/pubmed/21992570 http://dx.doi.org/10.1186/1475-925X-10-91 |
Ejemplares similares
-
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training
por: Abu-Rmileh, Amjad, et al.
Publicado: (2019) -
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022)