Cargando…

The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Massa, Alicia N., Childs, Kevin L., Lin, Haining, Bryan, Glenn J., Giuliano, Giovanni, Buell, C. Robin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203163/
https://www.ncbi.nlm.nih.gov/pubmed/22046362
http://dx.doi.org/10.1371/journal.pone.0026801
Descripción
Sumario:Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family.